气体放电管与压敏电阻可以并联组合,也可以串联组合并联组合无法解决放电管可能产生的续流问题,不宜用于交流电源系统保护串联组合电路,放电管起着一个开关作用,能使压敏电阻几乎无泄漏电流,不用顾忌压敏电阻性能的衰退。
压敏电阻串联放电管,因两者内阻差异较大,串联后分压不同,可简单理解开启电压为放电管击穿电压,关断电压为压敏电压,击穿电压通常两者接近为好,最常用型号471KD20和2RM4708绝大多数情况压敏电压可依据22倍交流1416倍直流取值环境恶劣时防止频繁动作,可将电压值提高到600V,甚至800V。
这种串联组合电路中,放电管起着一个开关作用,在没有暂态过电压作用时,它能将压敏电阻与系统隔离开,使压敏电阻中几乎无泄漏电流,可有效减缓压敏电阻性能衰退。
共模保护采用压敏电阻MOV与气体放电管GDT串联到保护地气体放电管GDT具有较大的绝缘阻抗,可减缓压敏电阻的老化,延长压敏电阻使用寿命。
一般在电源系统的防雷中采用压敏电阻串联气体放电管的组合电路在电源防雷中,由于放电管的隔离作用,压敏电阻几乎无泄漏电流流过,这样就大大减缓了压敏电阻因长期流过的泄漏电流所产生的老化现象,同时在保证可靠切断气体放电管工频续流的前提下,能够将压敏电阻的参考电压选的更低一些,以降低其残压和箝。
压敏电阻与陶瓷气体放电管串联使用,正常工作时陶瓷气体放电管不导通,压敏电阻没有漏电流,可以大大延长使用寿命受浪涌冲击时,陶瓷气体放电管首先击穿,然后由压敏电阻限制浪涌电压,总的残压为两者之和,略有增大几十伏冲击过去后,由于压敏电阻限制了电流,放电管不能维持导通而熄弧,恢复为正常工作。
例如,471KD10压敏电阻的开启电压范围可能小于预期,因此选择开启电压大于470V的压敏电阻更合适而最大通流量则需要根据实际情况进行评估,可能需要通过EMC测试来确定有时候,为了进一步降低残留电压,压敏电阻与气体放电管串联使用,如391压敏电阻与600V气体放电管组合,可以提供更有效的保护尽管压敏电阻在。
压敏电阻具有较大的寄生电容,当用于交流电源系统保护时,往往会在正常运行状态下产生数值可观的泄露电流,这样大的泄露电流会对系统产生影响,通过压敏电阻串联气体放电管的组合,可以有效解决问题并减缓压敏电阻性能的衰退。
防护器件中,气体放电管的特点是通流量大但响应时间慢冲击击穿电压高TVS管的通流量小,响应时间最快,电压钳位特性最好压敏电阻的特性介于这两者之间,当一个防护电路要求整体通流量大,能够实现精细保护的时候,防护电路往往需要这几种防护器件配合起来实现比较理想的保护特性但是这些防护器件不能。
测试时拆除,打完耐压后再装上,在许多行业是行不通的如灯具方面灯具在进行电气强度试验时,控制装置中的电容或组件不应断开为了使 LED 路灯能够满足安全要求,气体放电管的耐压选择至关重要,应该选取足够耐压的气体放电管与压敏电阻配套,压敏电阻和气体放电管串联电路应能够承受基本绝缘的耐压一般。
但是,在使用压敏电阻器时也有一些禁忌,例如压敏电阻超大允许值是要不得的1不管电压发生怎样的变化它的波动大值也不能够超过压敏电阻的大允许值,如果连续工作的电压超过大允许值就会使压敏电阻的使用时间减少 2当压敏电阻连接在电源线和大地之间的时候,可能会因为某些原因例如没有良好的接地会使电源。
气体放电管包括二极管和三极管,电压范围从75V3500V,超过一百种规格,严格按照CITEL标准进行生产监控和管理 放电管常用于多级保护电路中的第一级或前两级,起泄放雷电暂态过电流和限制过电压作用优点绝缘电阻很大,寄生电容很小,缺点在于放电时延即响应时间较大,动作灵敏度不够理想,对于。
压敏电阻虽然能吸收很大的浪涌电能量,但不能承受毫安级以上的持续电流,在用作过压保护时必须考虑到这一点压敏电阻的选用,一般选择标称压敏电压V1mA和通流容量两个参数。
压敏电阻 是防雷 过压保护 元件,广泛应用于电子设备的防雷保护压敏电阻在插座中呈现什么作用呢防雷插座 的设计自然是利用防雷元件的组合来实现保护防雷排插 会采用压敏电阻和 气体放电管 组合主要作用是吸收掉电路中的 浪涌电压 和突变电压,将电压控制到安全的范围,提高线路的稳定性和安全性随。
氧化锌压敏电阻则能在雷击时迅速击穿,钳制电压,但易老化瞬态抑制二极管则以极快的速度限制电压,但电流负荷量有限防雷器的保护过程通常是分级的,从响应最快的元件开始,如瞬态抑制二极管,再到气体放电管和压敏电阻为优化保护,有时会在气体放电管后串联压敏电阻以防止工频续流问题设计中,线路。
转载请注明:玄武区聚富迈设计服务中心 » 放电管 » 气体放电管与压敏串联(气体放电管与压敏串联的区别)
版权声明
本文仅代表作者观点,不代表B5编程立场。
本文系作者授权发表,未经许可,不得转载。