jdl008

放电管的基本原理(放电管的基本原理图)

jdl008 放电管 2024-09-16 132浏览 0

辉光放电现象是基于电场作用下的基本物理过程当电场作用于放电管的两极,电子从阴极被吸引,正离子则向阳极移动它们在各自的极附近聚集,形成明显的空间电荷区域由于正离子的运动速度远低于电子,所以正离子区域的电荷密度显著高于电子区域,导致电压主要集中在阴极附近的狭窄区域,这是辉光放电的显著特性。

放电管的基本原理(放电管的基本原理图)

放电管的工作原理是气体放电当外加电压增大到超过气体的绝缘强度时,两极间的间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平。

气体放电管的工作原理是气体间隙放电,当放电管两极之间施加一定电压时,便在极间产生不均匀电场在此电场作用下,管内气体开始游离,当外加电压增大到使极间场强超过气体的绝缘强度时,两极之间的间隙将放电击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压。

一原理 当放电管两极的电压升高到一定值时,稀薄气体中残留的正离子被电场加速,获得足够的动能撞击阴极,产生二次电子,经簇射过程形成大量带电粒子,使气体导电辉光放电具有电流密度小温度低等特点在放电管中产生明光和暗光区域管中不同的气体有不同的发光颜色二过程 对玻璃圆柱状放电管。

放电管的基本原理(放电管的基本原理图)

气体放电管GDT是一种间隙式的防雷保护元件当瞬态电压超过其绝缘强度时,GDT内部的惰性气体被击穿,由原来的绝缘状态转化为导电状态,导通后放电管两极之间的电压维持在放电弧道所决定的残压水平,这种残压一般很低,从而使得与放电管并联的电子设备免受过电压损坏陶瓷气体放电管应用领域较为广泛,在。

版权声明

本文仅代表作者观点,不代表B5编程立场。
本文系作者授权发表,未经许可,不得转载。

继续浏览有关 放电管的基本原理 的文章